New scaling laws for turbulent Poiseuille flow with wall transpiration
نویسندگان
چکیده
منابع مشابه
On scaling the mean momentum balance and its solutions in turbulent Couette–Poiseuille flow
The statistical properties of fully developed planar turbulent Couette–Poiseuille flow result from the simultaneous imposition of a mean wall shear force together with a mean pressure force. Despite the fact that pure Poiseuille flow and pure Couette flow are the two extremes of Couette–Poiseuille flow, the statistical properties of the latter have proved resistant to scaling approaches that co...
متن کاملNematic Liquids in Weak Capillary Poiseuille Flow: Structure Scaling Laws and Effective Conductivity Implications
Abstract. We study the scaling properties of heterogeneities in nematic (liquid crystal) polymers that are generated by pressure-driven, capillary Poiseuille flow. These studies complement our earlier drag-driven structure simulations and analyses. We use the mesoscopic Doi-Marrucci-Greco model, which incorporates excluded-volume interactions of the rod-like particle ensemble, distortional elas...
متن کاملScaling laws for fully developed turbulent flow in pipes: discussion of experimental data.
We compare mean velocity profiles measured in turbulent pipe flows (and also in boundary layer flows) with the predictions of a recently proposed scaling law; in particular, we examine the results of the Princeton "super-pipe" experiment and assess their range of validity.
متن کاملMagnetohydrodynamic (MHD ) Plane Poiseuille Flow With Variable Viscosity and Unequal Wall Temperatures
متن کامل
Predictive model for wall-bounded turbulent flow.
The behavior of turbulent fluid motion, particularly in the thin chaotic fluid layers immediately adjacent to solid boundaries, can be difficult to understand or predict. These layers account for up to 50% of the aerodynamic drag on modern airliners and occupy the first 100 meters or so of the atmosphere, thus governing wider meteorological phenomena. The physics of these layers is such that th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Fluid Mechanics
سال: 2014
ISSN: 0022-1120,1469-7645
DOI: 10.1017/jfm.2014.98